기본 콘텐츠로 건너뛰기

각도 단위 변환

(1) 각도의 기본 단위

각도를 나타내는 단위입니다. 360분법으로 표시하는 1도는 사방을 360으로 나눈 크기입니다. 1분은 1도를 60등분한 각이고 1초는 1분을 다시 60등분한 크기입니다. 분(arcminute)과 초(arcsecond)는 시간을 나타내는 단위인 분(minute), 초(second)와 기호가 같은데, 천문학(영어)에서는 둘을 구분하기 위해 각도는 나타내는 단위에는 'arc-'를 붙여 표기합니다.

각도를 나타내는 다른 방법으로 호도법이 있습니다. 호도법은 반지름에 대한 호의 길이 단위로 각도를 표시하는 방법으로 사방은 원주율(π)의 2배 크기가 됩니다(360° = 2π rad). 호도법으로 나타낸 각도는 라디안(radian)으로 표시하며, 360분법으로 나타낸 각도를 호도법으로 나타낸 각도로 바꾸어 주려면 360분법으로 나타낸 각도에 π/180을 곱해주면 됩니다. 컴퓨터 프로그램 언어에서 삼각함수를 계산할 때에는 주로 호도법은 쓰고 있습니다.


1도(˚ , degree) : 1˚ = 60′ = 3600″ = π/180 rad

1분(′, arcminute) : 1′ = 60″ = 1/60°

1초(″, arcsecond) : 1″ = 1/60′ = 1/3600°

1라디안(rad, radian) : 1 rad = 180/π° (π = 원주율 = 3.1415926535897932384626433832795)


(2) 시간의 기본 단위

시간의 기본단위는 초(second)입니다. 1초는 국제 표준으로 정밀하게 정의되어 있는데, 세슘 원자(세슘-133)가 9,192,631,770번 진동하는 동안의 시간으로 정의되어 있습니다. 본래 1초는 1 평균 태양일의 1/86400로 정의되어 있었지만 지구의 자전 주기는 다소 불규칙하고 느리게 바뀌고 있으므로 균일한 시간을 정의하기에는 부족합니다. 이후 1초는 지구의 공전 주기를 바탕으로 다시 정의 되었다가 지금은 세슘 원자의 특성을 기반으로 새롭게 정의하여 쓰고 있습니다.

1초보다 더 긴 단위로는 분과 시간, 일이 있습니다. 1분은 60초, 1시간은 60분, 1일은 24시간으로 정의되어 있습니다. 천문학에서는 시간을 표시할 때 각도의 표시 단위와 헷갈리지 않도록 분(minute)은 m, 초는 s로 표기합니다. 예를 들어 각도로  4분 30초는 4 30로, 시간으로 4분 30초는 4m 30s로 적습니다.


1일(d, day) = 24시간 = 1440분 = 86400초

1시간(h, hour) = 60분 = 3600초 = 1/24일

1분(m, minute) = 60초 = 1/60시간 = 1/1440일

1초(s, second) = 1/60분 = 1/3600시간 = 1/86400일


(3) 각도와 시간 단위의 관계

각도와 시간은 서로 아래의 관계를 가집니다. 1시간은 각도로 15도에 해당합니다. 시간으로 나타낸 분(minute)과 초(second)를 각도로 표현하려면 15를 곱해주면 됩니다. 예를 들어 15m은 각도로 225'(= 15×15') 입니다.


360˚ = 24h

1˚ = 1/15h = 4m

1′ = 1/15m

1″ = 1/15s

1h = 15˚

1m = 15′

1s = 15″


(4) 주로 쓰는 접두사

각도나 시간을 나타낼 때 쓰는 가장 작은 단위는 초입니다. 그런데 때때로 초 단위로는 필요한 각도를 나타내기에 불편할 때가 있습니다. 아주 작은 크기의 각도나 짧은 순간을 나타내기에는 단위가 너무 크기 때문인데, 이 문제를 보완하기 위해 접두어를 써서 작은 각도나 짧은 시간을 표시합니다. 밀리(mili), 마이크로(micro)가 자주 쓰입니다.


mili- : 약호 m, 천분의 일, 1/1000  (예) millisecond(ms)

micro- : 약호 μ, 100만분의 일, 1/1000000  (예) microsecond(μs)

nano- : 약호 n, 10억 분의 1  (예) nanosecond(ns)

댓글

  1. 1라디안이 360도법의 약 57.3˚ 이라는것을 알려주면 이해가 더 빠르죠.
    2 X π X 1rad = 360˚ ≒ 2 X 3.14(π) X 57.3˚ (1 rad)

    답글삭제

댓글 쓰기

이 블로그의 인기 게시물

Cramer rule - 크래머 공식

  크래머 공식 (Cramer's rule)은 선형연립방정식의 해를 행렬식 으로 표현하는 선형대수학 의 정리(theorem)이다. 이름은 가브리엘 크래머 (Gabriel Cramer) (1704 - 1752)에게서 유래한다.     방정식이 많은 경우의 실제 해의 계산에 있어서는 그리 유용하지 않지만, 피봇팅(pivoting)이 필요하지 않은 경우 작은 크기의 행렬에서는 가우스 소거법보다 훨씬 효율적이다. 크래머 공식은 연립방정식의 해를 외재적으로 표현하기 때문에 이론의 전개에 유용하다.   연립방정식이 다음과 같은 행렬 간의 곱으로 표현될 때. A x = c   식에서 정사각행렬 (square matrix) A 는 역행렬을 갖고, 벡터 x 는 ( x i ) 를, 벡터 c 는 ( c i ) 를 성분으로 갖는 열벡터이다.   정리는 다음과 같다. 식에서 A i 는 A 의 i 번째 열을 열벡터 c 로 대체한 행렬을 말한다.     예 [ 편집 ] 2x2 행렬에서 공식을 적용해 보면, 주어진 연립방정식이 다음과 같을 때, a x + b y = e c x + d y = f , 이 식은 로 쓸 수 있으며, 공식을 적용하면, 이 된다.         미분기하학에 적용 [ 편집 ]   크래머 공식은 미분기하 문제를 풀 때 매우 유용하다. 두 개의 방정식 , 이라 가정한다. 여기서, u 와 v 는 독립 변수이고, , 라 정의한다.   여기서 의 방정식을 찾는 것은 크래머 공식으로 해결할 수 있다.   첫째 , F,G,x,y 의 미분을 계산한다. dF, dG 에 dx 와 dy 를 대입하면   u 와...

CTE(Coefficient of Thermal Expansion: 열팽창 계수)

열변형량 계산표.xlsx         측정기기에 대해서 1. 사용 환경은 20℃으로 설정하지 않으면 안되나요?   그런 일은 없겠지만, 물건은 온도가 높아지면 팽창하고, 낮아지면 줄어듭니다. 거기서 공업적 길이를 나타내는 경우에 표준 온도 20℃으로 결정해 그 온도에 있어서의 결과를 나타내게 되어 있습니다. 그것은 ISO 1에 의해, 「길이 측정의 표준 온도는 20℃으로 한다」라고 규정되고 있습니다. 단, 이 규격에는 20℃에 대한 허용치는 나타나지 않습니다만, 별도인 규격으로 예를 들면 JIS Z 8703에서는 광공업에 있어서의 시험(측정이나 측정기의 교정도 포함된다)을 실시하는 장소의 온도에 관한 표준 상태의 허용차이가 규정되고 있습니다.   표준 온도의 허용차이 급별 허용차이 ℃ 온도 0. 5급 ± 0.5 온도 1급 ± 1 온도 2급 ± 2 온도 5급 ± 5 온도 15급 ± 15   즉, 항상 20℃에 정확히 맞추는 것은 매우 곤란해서, 어느 허용차이의 온도 환경이 필요하게 될까는 어느 정도의 정확한 측정이나 시험을 실시하느냐에 달려있다고 봅니다. 고정밀도의 측정을 실시하려면 , 허용차이의 작은 온도 환경이 요구됩니다.   2. 선열팽창 계수를 가르쳐 주세요?   물건은 온도가 높아지면 팽창하고 낮아지면 줄어듭니다. 온도 변화에 의한 물체의 길이의 증감을 수치화한 것이 선열팽창 계수입니다. 아래와 같이에 당사제품의 선열팽창 계수를 몇개인가 올려 보고 싶다고 생각합니다. 제품명 정밀도에 영향을 주는 주요 부분의 재질 선열팽창 계수 게이지 블록(스틸) 강 10.8 X 10 -6 K -1 게이지 블록(세라믹) ...